
Theorem 11.3.12: Let A be an m×n matrix, and let a1, . . . ,am be its rows. Let v1, . . . ,vr

be its right singular vectors, and let σ1, . . . , σr be its singular values. For any positive integer
k ≤ r, Span {v1, . . . ,vk} is the k-dimensional vector space V that minimizes

(distance from a1 to V)2 + · · ·+ (distance from am to V)2

and the minimum sum of squared distances is ‖A‖2F − σ2
1 − σ2

2 − · · · − σ2
k.

Proof

By Lemma 11.3.11, the sum of squared distances for the space V = Span {v1, . . . ,vk} is

‖A‖2F − σ2
1 − σ2

2 − · · · − σ2
k (11.1)

To prove that this is the minimum, we need to show that any other k-dimensional vector
space W leads to a sum of squares that is no smaller.

Any k-dimensional vector space W has an orthonormal basis. Let w1, . . . ,wk be such a
basis. Plugging these vectors into Lemma 11.3.11, we get that the sum of squared distances
from a1, . . . ,am to W is

‖A‖2F − ‖Aw1‖2 − ‖Aw2‖2 − · · · − ‖Awk‖2 (11.2)

In order to show that V is the closest, we need to show that the quantity in 11.2 is no less than
the quantity in 11.1. This requires that we show that ‖Aw1‖2+· · ·+‖Awk‖2 ≤ σ2

1+· · ·+σ2
k.

Let W be the matrix with columns w1, . . . ,wk. Then ‖AW‖2F = ‖Aw1‖2+ · · ·+‖Awk‖2 by
the column analogue of Lemma 11.1.1. We must therefore show that ‖AW‖2F ≤ σ2

1+· · ·+σ2
k.

By Theorem 11.3.10, A can be factored as A = UΣV T where the columns of V are
v1, . . . ,vr, and where U and V are column-orthogonal and Σ is the diagonal matrix with
diagonal elements σ1, . . . , σr. By substitution, ‖AW‖2F = ‖UΣV TW‖2F . Since U is column-
orthogonal, multiplication by U preserves norms, so ‖UΣV TW‖2F = ‖ΣV TW‖2F .

Let X denote the matrix V TW . The proof makes use of two diferent interpretations of
X, in terms of columns and in terms of rows.

First, let x1, . . . ,xk denote the columns of X. For j = 1, . . . , k, by the matrix-vector
interpretation of matrix-matrix multiplication, xj = V Twj . By the dot-product interpre-
tation of matrix-vector multiplication, xj = [v1 · wj , . . . ,vr · wj ], which is the coordinate
representation in terms of v1, . . . ,vr of the projection of wj onto Span {v1, . . . ,vr}. There-
fore the projection itself is V xj . The projection of a norm-one vector onto a space has norm
at most one, so ‖V xj‖ ≤ 1. Since V is a column-orthogonal matrix, ‖V xj‖ = ‖xj‖, so xj

has norm at most one. This shows that ‖X‖2F ≤ k.

Second, let y1, . . . ,yr denote the rows of X. For i = 1, . . . , r, by the vector-matrix in-
terpretation of matrix-matrix multiplication, yi = vT

i W . By the dot-product interpretation
of vector-matrix multiplication, yi = [vi ·w1, . . . ,vi ·wk], which is the coordinate represen-
tation in terms of w1, . . . ,wr of the projection of vi onto W. Using the same argument as
before, since vi has norm one, the coordinate representation has norm at most one. This
shows that each row yi of X has norm at most one.

Now we consider ΣX. Since Σ is a diagonal matrix with diagonal elements σ1, . . . , σr,
it follows that row i of ΣX is σi times row i of X, which is σiyi. Therefore the squared
Frobenius norm of ΣX is σ2

1‖y1‖2 + · · ·σ2
r‖yr‖2. How big can that quantity be?



Imagine you have k dollars to spend on r products. Product i gives you value σ2
i

per dollar you spend on it. Your goal is to maximize the total value you receive. Since
σ1 ≥ · · · ≥ σr, it makes sense to spend as much as you can on product 1, then spend as
much of your remaining money on product 2, and so on. You are not allowed to spend more
than one dollar on each product. What do you do? You spend one dollar on product 1,
one dollar on product 2, ..., one dollar on product k, and zero dollars on the remaining
products. The total value you receive is then σ2

1 + · · ·+ σ2
r .

Now we formally justify this intuition. Our goal is to show that σ2
1‖y1‖2+· · ·+σ2

r‖yr‖2 ≤
σ2
1 + · · · + σ2

k. We have shown that ‖yi‖2 ≤ 1 for i = 1, . . . , k. Since ‖X‖2F ≤ k, we also
know that ‖y1‖2 + · · ·+ ‖yr‖2 ≤ k.

Define βi =

{
σ2
i − σ2

k if i ≤ r
0 otherwise

Then σ2
i ≤ βi+σ2

k for i = 1, . . . , r (using the fact that σ1, . . . , σr are in nonincreasing order).

Therefore

σ2
1‖y1‖2 + · · ·+ σ2

r‖yr‖2 ≤ (β1 + σ2
k)‖y1‖2 + · · ·+ (βr + σ2

k)‖yr‖2

=
(
β1‖y1‖2 + · · ·+ βr‖yr‖2

)
+
(
σ2
k‖y1‖2 + · · ·+ σ2

k‖yr‖2
)

≤ (β1 + · · ·+ βr) + σ2
k

(
‖y1‖2 + · · ·+ ‖yr‖2

)
≤

(
σ2
1 + · · ·+ σ2

k − kσ2
k

)
+ σ2

kk

= σ2
1 + · · ·+ σ2

k

This completes the proof. �


