
In the next proof, we use the Cauchy-Schwartz inequality: for vectors a and b, |a·b| ≤ ‖a‖ ‖b‖.
The proof is as follows: Write b = b||a + b⊥a. By the Pythagorean Theorem, ‖b‖2 = ‖b||a‖2 +

‖b⊥a‖2, so ‖b‖2 ≥ ‖b||a‖2 = ‖ b·aa·aa‖
2 =

(
b·a
‖a‖2

)2
‖a‖2 = (b·a)2

‖a‖2 , so ‖b‖2‖a‖2 ≥ (b · a)2, which

proves the inequality.

Property S3 of the singular value decomposition states that the matrix U of left singular
vectors is column-orthogonal. We now prove that property.

The left singular vectors u1, . . . ,ur have norm one by construction. We need to show that
they are mutually orthogonal. We prove by induction on k that, for i = 1, 2, . . . , k, the vector
ui is orthogonal to ui+1, . . . ,ur. Setting k = r proves the desired result.

By definition of the singular vectors and values,

AV =

 σ1u1 · · · σk−1uk−1 σkuk σk+1uk+1 · · · σrur


By the inductive hypothesis, uk is orthogonal to u1, . . . ,uk−1. Since uk has norm one, uk ·
σkuk = σk. Let

βk+1 = uk · uk+1

βk+2 = uk · uk+2

...

βr = uk · ur

Then
uT
kAV =

[
0 · · · 0 σk βk+1 · · · βr

]
(11.1)

Our goal is to show that βk+1, . . . , βr are all zero, for this would show that uk is orthogonal to
uk+1, . . . ,ur.

Let w =
[

0 · · · 0 σk βk+1 · · · βr
]
. Then ‖w‖2 = σ2

k + β2
k+1 + · · · + β2

r . Since V
is column-orthogonal, ‖Vw‖2 = ‖w‖2, so

‖Vw‖2 = σ2
k + β2

k+1 + · · ·+ β2
r (11.2)

Furthermore, since the first k− 1 entries of w are zero, the vector Vw is a linear combination of
the remaining r − (k − 1) columns of V . Since the columns of V are mutually orthogonal, Vw
is orthogonal to v1, . . . ,vk−1. Let v = Vw/‖Vw‖. Then v has norm one and is orthogonal to
v1, . . . ,vk−1. We will show that if βk+1, . . . , βr are not all zero then ‖Av‖ > ‖Avk‖, contradicting
the choice of vk.

By Equation 11.1, (uT
kAV ) ·w = σ2

k + β2
k+1 + · · ·+ β2

r . By the Cauchy-Schwartz Inequality,
|uk · (AVw)| ≤ ‖uk‖ ‖AVw‖, so, since ‖uk‖ = 1, we infer ‖AVw‖ ≥ σ2

k + β2
k+1 + · · · + β2

r .
Combining this inequality with Equation 11.2, we obtain

‖AVw‖
‖Vw‖

≥
σ2
k + β2

k+1 + · · ·+ β2
r√

σ2
k + β2

k+1 + · · ·+ β2
r

which is greater than σ2
k if βk+1, . . . , βr are not all zero. This completes the induction step, and

the proof.


