In the next proof, we use the *Cauchy-Schwartz inequality*: for vectors \boldsymbol{a} and \boldsymbol{b} , $|\boldsymbol{a}\cdot\boldsymbol{b}| \leq ||\boldsymbol{a}|| ||\boldsymbol{b}||$. The proof is as follows: Write $\boldsymbol{b} = \boldsymbol{b}^{||\boldsymbol{a}|} + \boldsymbol{b}^{\perp a}$. By the Pythagorean Theorem, $||\boldsymbol{b}||^2 = ||\boldsymbol{b}^{||\boldsymbol{a}|}|^2 + ||\boldsymbol{b}^{\perp a}||^2$, so $||\boldsymbol{b}||^2 \geq ||\boldsymbol{b}^{||\boldsymbol{a}|}|^2 = ||\frac{\boldsymbol{b}\cdot\boldsymbol{a}}{\boldsymbol{a}\cdot\boldsymbol{a}}\boldsymbol{a}||^2 = \left(\frac{\boldsymbol{b}\cdot\boldsymbol{a}}{||\boldsymbol{a}||^2}\right)^2 ||\boldsymbol{a}||^2 = \frac{(\boldsymbol{b}\cdot\boldsymbol{a})^2}{||\boldsymbol{a}||^2}$, so $||\boldsymbol{b}||^2 ||\boldsymbol{a}||^2 \geq (\boldsymbol{b}\cdot\boldsymbol{a})^2$, which proves the inequality.

Property S3 of the singular value decomposition states that the matrix U of left singular vectors is column-orthogonal. We now prove that property.

The left singular vectors u_1, \ldots, u_r have norm one by construction. We need to show that they are mutually orthogonal. We prove by induction on k that, for $i = 1, 2, \ldots, k$, the vector u_i is orthogonal to u_{i+1}, \ldots, u_r . Setting k = r proves the desired result.

By definition of the singular vectors and values,

$$AV = \left[\begin{array}{c|c} \sigma_1 \boldsymbol{u}_1 & \cdots & \sigma_{k-1} \boldsymbol{u}_{k-1} \\ \end{array} \right] \sigma_k \boldsymbol{u}_k \sigma_{k+1} \boldsymbol{u}_{k+1} \cdots \sigma_r \boldsymbol{u}_r$$

By the inductive hypothesis, u_k is orthogonal to u_1, \ldots, u_{k-1} . Since u_k has norm one, $u_k \cdot \sigma_k u_k = \sigma_k$. Let

$$egin{array}{rcl} eta_{k+1} &=& oldsymbol{u}_k \cdot oldsymbol{u}_{k+1} \ eta_{k+2} &=& oldsymbol{u}_k \cdot oldsymbol{u}_{k+2} \ dots && dots \ dots && dots \ eta_r &=& oldsymbol{u}_k \cdot oldsymbol{u}_r \end{array}$$

Then

$$\boldsymbol{u}_{k}^{T}AV = \begin{bmatrix} 0 & \cdots & 0 & \sigma_{k} & \beta_{k+1} & \cdots & \beta_{r} \end{bmatrix}$$
(11.1)

Our goal is to show that $\beta_{k+1}, \ldots, \beta_r$ are all zero, for this would show that \boldsymbol{u}_k is orthogonal to $\boldsymbol{u}_{k+1}, \ldots, \boldsymbol{u}_r$.

Let $\boldsymbol{w} = \begin{bmatrix} 0 & \cdots & 0 & \sigma_k & \beta_{k+1} & \cdots & \beta_r \end{bmatrix}$. Then $\|\boldsymbol{w}\|^2 = \sigma_k^2 + \beta_{k+1}^2 + \cdots + \beta_r^2$. Since V is column-orthogonal, $\|V\boldsymbol{w}\|^2 = \|\boldsymbol{w}\|^2$, so

$$\|V\boldsymbol{w}\|^{2} = \sigma_{k}^{2} + \beta_{k+1}^{2} + \dots + \beta_{r}^{2}$$
(11.2)

Furthermore, since the first k-1 entries of \boldsymbol{w} are zero, the vector $V\boldsymbol{w}$ is a linear combination of the remaining r - (k-1) columns of V. Since the columns of V are mutually orthogonal, $V\boldsymbol{w}$ is orthogonal to $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_{k-1}$. Let $\boldsymbol{v} = V\boldsymbol{w}/||V\boldsymbol{w}||$. Then \boldsymbol{v} has norm one and is orthogonal to $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_{k-1}$. We will show that if $\beta_{k+1}, \ldots, \beta_r$ are not all zero then $||A\boldsymbol{v}|| > ||A\boldsymbol{v}_k||$, contradicting the choice of \boldsymbol{v}_k .

By Equation 11.1, $(\boldsymbol{u}_k^T A V) \cdot \boldsymbol{w} = \sigma_k^2 + \beta_{k+1}^2 + \cdots + \beta_r^2$. By the Cauchy-Schwartz Inequality, $|\boldsymbol{u}_k \cdot (A V \boldsymbol{w})| \leq ||\boldsymbol{u}_k|| ||A V \boldsymbol{w}||$, so, since $||\boldsymbol{u}_k|| = 1$, we infer $||A V \boldsymbol{w}|| \geq \sigma_k^2 + \beta_{k+1}^2 + \cdots + \beta_r^2$. Combining this inequality with Equation 11.2, we obtain

$$\frac{\|AV\boldsymbol{w}\|}{\|V\boldsymbol{w}\|} \geq \frac{\sigma_k^2 + \beta_{k+1}^2 + \dots + \beta_r^2}{\sqrt{\sigma_k^2 + \beta_{k+1}^2 + \dots + \beta_r^2}}$$

which is greater than σ_k^2 if $\beta_{k+1}, \ldots, \beta_r$ are not all zero. This completes the induction step, and the proof.