Errata for Edition 1 of *Coding the Matrix*, January 13, 2017

Your copy might not contain some of these errors. Most do not occur in the copies currently being sold as April 2015.

- Section 0.3: “... the input is a *pre-image* of the input” should be “... the input is a *pre-image* of the output”.

- Figure 4 in Section 0.3.8: The figure should be as follows:

```
\[\begin{array}{c}
g & f & fg \\
\hline
A & B & C \\
1 & 2 & 3 \\
\hline
p & r & g \circ f \\
\end{array}\]
```

- Definition 0.3.14: “there exists \(x \in A\) such that \(f(x) = z\)” should be “there exists \(x \in D\) such that \(f(x) = z\).”

- Section 4=0.4.4: “…the cryptographer changes the scheme simply by removing \(♠\) as a possible value for \(p\)” should be “… as a possible value for \(k\).”

- Section 0.5.4: At the end of the section labeled *Mutating a set,*

```python
>>> U=S.copy()
>>> U.add(5)
>>> S
{1, 3}
```

should end with

```python
>>> S
{6}
```

- Problem 0.8.5: “\(\text{row}(p)\)” should be “\(\text{row}(p, n)\).”

- Section 1.4.1: “Using the fact that \(i^2 = 1\)” should be “Using the fact that \(i^2 = -1\)”

- Section 1.4.5: The diagram illustrating rotation by 90 degrees is incorrect. The dots should form vertical lines to the left of the y-axis.

- Task 1.4.8 and 1.4.9: The figures accompanying these tasks are incorrect; they involve rotation by -90 degrees (i.e. 90 degrees clockwise) instead of 90 degrees (i.e. 90 degrees counterclockwise).

- Task 1.4.10: `image.file2image(filename)` returns a representation of a color image, namely a list of lists of 3-tuples. For the purpose of this task, you must transform it to a representation of a grayscale image, using `image.color2gray(·)`. Also, the pixel intensities are numbers between 0 and 255, not between 0 and 1. In this task, you should assign to `pts` the list of complex numbers \(x + iy\) such that the image intensity of pixel \((x, y)\) is less than 120.

- Task 1.4.11: The task mentions `pts` but `S` is intended.

- Section 2.3: “We’ve seen two examples of what we can represent with vectors: multisets and sets.” Actually, we’ve only seen multisets.
• Section 2.4.1: “or from $[-4, 4]$ to $[-3, -2]$” should be “or from $[-4, -4]$ to $[-3, -2]$”.

• Example 2.6.8: For $\alpha = .75, \beta = .25, \alpha \mathbf{u}_2 + \beta \mathbf{v}_2$ should be $[6.25, 0]$, not $[6.25, -2]$.

• Section 2.8.3: “Here is an example of solving an instance of the 3×3 puzzle” should be “Here is an example of one step towards solving an instance of the 3×3 puzzle.”

• Example 2.9.1: “Consider the dot-product of $[1, 1, 1, 1]$ with $[10, 20, 0, 40, 100]$” should be “Consider the dot-product of $[1, 1, 1, 1, 1]$ with $[10, 20, 0, 40, -100]$.”

• Section 2.9.2: “...in terms of five linear equations...” should be “...in terms of three linear equations...”.

• Example 2.9.5: $\text{cost} = \text{Vec}(D, \{\text{hops} : \$2.50/ounce, \text{malt} : \$1.50/pound, \text{water} : \$0.006, \text{yeast} : \$0.45/gram\})$ should be $\text{cost} = \text{Vec}(D, \{\text{hops} : \$2.50/ounce, \text{malt} : \$1.50/pound, \text{water} : \$0.006, \text{yeast} : \$0.45/gram\})$.

• Definition 2.9.6: “A linear equation is an equation of the form $\mathbf{a} \cdot \mathbf{x} = \beta$, where \ldots is a vector variable.” should be “A linear equation is an equation of the form $\mathbf{a} \cdot \mathbf{x} = \beta$, where \ldots \mathbf{x} is a vector variable.”

• Example 2.9.7: The total energy is not 625J but is 0.0845J, as the Python shows.

• Quiz 2.9.9: The total energy consumed in the last row of the table should be 1 J, not 1 W.

• Definition 2.9.10: “In general, a system of linear equations (often abbreviated linear system) is a collection of equations:

\[
\begin{align*}
\mathbf{a}_1 \cdot \mathbf{x} & = \beta_1 \\
\mathbf{a}_2 \cdot \mathbf{x} & = \beta_2 \\
\vdots & \\
\mathbf{a}_m \cdot \mathbf{x} & = \beta_m
\end{align*}
\]

where \mathbf{x} is a vector variable. A solution is a vector $\hat{\mathbf{x}}$ that satisfies all the equations.” should be

“In general, a system of linear equations (often abbreviated linear system) is a collection of equations:

\[
\begin{align*}
\mathbf{a}_1 \cdot \mathbf{x} & = \beta_1 \\
\mathbf{a}_2 \cdot \mathbf{x} & = \beta_2 \\
\vdots & \\
\mathbf{a}_m \cdot \mathbf{x} & = \beta_m
\end{align*}
\]

where \mathbf{x} is a vector variable. A solution is a vector $\hat{\mathbf{x}}$ that satisfies all the equations.”

• Quiz 2.9.13: The solution should be “The dot-products are $[2, 2, 0, 0]$.”

• Quiz 2.9.14: The solution should be $[14, 20, 26, 32]$.

• Quiz 2.9.15: In the solution, the range should be $\text{range(len(haystack)-s+1)}$, not $\text{range(len(haystack)-s)}$.

• Example 2.9.17:

 − “The password is $\hat{x} = 10111$” should be “The password is $\mathbf{x} = 10111$”,
• Example 2.9.28: “Eve can use the distributive property to compute the dot-product of this sum with the password even though she does not know the password:

\[(01011 + 11110) \cdot x = 01011 \cdot x + 11110 \cdot x \]

\[= 0 + 1 \]

\[= 1\]

should be

“Eve can use the distributive property to compute the dot-product of this sum with the password \(x\) even though she does not know the password:

\[(01011 + 11110) \cdot x = 01011 \cdot x + 11110 \cdot x \]

\[= 0 + 1 \]

\[= 1\]

• Task 2.12.8: “Did you get the same result as in Task ???” should be “Did you get the same result as in Task 2.12.7?”

• Quiz 3.1.7: the solution

```python
def lin_comb(vlist, clist):
    return sum([coeff*v for (c,v) in zip(clist, vlist)])
```

should be

```python
def lin_comb(vlist, clist):
    return sum([coeff*v for (coeff,v) in zip(clist, vlist)])
```

• Section 3.2.4: The representation of the old generator \([0,0,1]\) in terms of the new generators \([1,0,0], [1,1,0], \) and \([1,1,1]\) should be

\[0,0,1] = 0[1,0,0] − 1[1,1,0] + 1[1,1,1]\n
• In Example 3.2.7, “The secret password is a vector \(\hat{\cdot}\) over GF(2).... the human must respond with the dot-product \(a \cdot \hat{\cdot}\)” should be “The secret password is a vector \(\hat{x}\) over GF(2).... the human must respond with the dot-product \(a \cdot \hat{x}\)”.

• Example 3.3.10: “This line can be represented as Span \(\{[1,−2,−2]\}\)” should be “This line can be represented as Span \(\{[−1,−2,2]\}\)”

• In Example 3.5.1, “There is one plane through the points \(u_1 = [1,0,4.4], u_2 = [0,1,4],\) and \(u_2 = [0,0,3]\)” should be “There is one plane through the points \(u_1 = [1,0,4.4], u_2 = [0,1,4], \) and \(u_3 = [0,0,3]\)”.

• Section 4.1.4: The pretty-printed form of \(M\) should be

```python
>>> print(M)
# @ ?
---
a | 2 1 3
b | 20 10 30
```
for some order of the columns.

- **Quiz 4.1.9**: The given implementation of `mat2rowdict` will not work until you have implemented the `getitem` procedure in `mat.py`.

- **Quiz 4.3.1**: The pretty-printed form of `mat2vec(M)` should be

  ```python
  >>> print(mat2vec(M))
  ('a', '#') ('a', '?') ('a', '@') ('b', '#') ('b', '?') ('b', '@')
  2 3 1 20 30 10
  ```

 for some order of the columns.

- **Quiz 4.4.2**: The pretty-printed form of `transpose(M)` should be

  ```python
  >>> print(transpose(M))
  a b
  # | 2 20  
  @ | 1 10  
  ? | 3 30 
  ```

 for some order of the rows. Also, in the solution, the upper-case F should be replaced with a lower-case f.

- **Example 4.6.6**: The matrix-vector product should be $[1, -3, -1, 4, -1, 2, 0, -1, 0]$.

- **Definition 4.6.9**: “An $n \times n$ upper-triangular matrix A is a matrix with the property that $A_{ij} = 0$ for $j > i$” should be “for $i > j$."

- **Section 4.7.2**: “Applying Lemma 4.7.4 with $v = u_1$ and $z = u_1 - u_2$” should be “Applying Lemma 4.7.4 with $v = u_2$ and $z = u_1 - u_2$”

- **Section 4.7.4**: “because it is the same as $H \cdot c$, which she can compute” should be “because it is the same as $H \cdot \tilde{c}$, which she can compute”

- **Section 4.9.3**: The URL `http://xkcd.com/824` should be `https://xkcd.com/184/`.

- **Section 4.11.2**: “and here is the same diagram with the walk 3 c 2 e 4 2 shown” should be “and here is the same diagram with the walk 3 e 2 c 4 2 shown”

- **Example 4.11.9**: $g \circ f([x_1, x_2])$ should be $[x_1 + x_2, x_1 + 2x_2]$.

- **Example 4.11.15**: The last matrix (in the third row) should be $\begin{bmatrix} 7 & 19 \\ 4 & 8 \end{bmatrix}$. a superscript “$T$” indicating transpose:

 $$\begin{bmatrix} 7 & 4 \\ 19 & 8 \end{bmatrix}^T$$

- **Example 4.13.15**: $xvec_1$ should be x_1 and $xvec_2$ should be x_2.

- The description of Task 4.14.2 comes before the heading “Task 4.14.2”.

- **Section 4.15 (Geometry Lab)**: `position` is used synonymously with `location`.

- **Section 4.14.6**: “Hint: this uses the special property of the order of H’s rows” should be “Hint: this uses the special property of the order of H’s columns.”
• Problem 4.17.10 is the same as Problem 4.17.5.

• Problem 4.17.18: “For this procedure, the only operation you are allowed to do on A is vector-matrix multiplication, using the * operator: v*A.” should be “For this procedure, the only operation you are allowed to do on B is vector-matrix multiplication, using the * operator: v*B.”

• Problem 4.17.21: $xvec_2$ should be x_2.

• Section 5.3.1: The Grow algorithm should be:

```
def Grow(V):
    B = ∅
    repeat while possible:
        find a vector v in V that is not in Span B, and put it in B.
```

• Example 5.3.2: “Finally, note that Span $B = \mathbb{R}^2$ and that neither v_1 nor v_2 alone could generate \mathbb{R}^2” should be \mathbb{R}^3.

• Section 5.4.3: “Let D be the set of nodes, e.g. $D = \{\text{Pembroke, Athletic, Main, Keeney, Wriston}\}$” should be “$D = \{\text{Pembroke, Athletic, Bio-Med, Main, Keeney, Wriston, Gregorian}\}$”

• Section 5.9.1: “The first vector a_1 goes horizontally from the top-left corner of the whiteboard element to the top-right corner” should be “The first vector a_1 goes horizontally from the top-left corner of the top-left sensor element to the top-right corner” and “The second vector a_2 goes vertically from the top-left corner of whiteboard to the bottom-left corner” should be “The second vector a_2 goes vertically from the top-left corner of the top-left sensor element to the bottom-left corner.”

$$L = \{[0,0,0],[1,0,0],[0,1,0],[1,1,0],[0,0,1],[0,1,1],[1,0,1],[1,1,1]\}$$

should be

$$L = \{[0,0,0],[1,0,0],[0,1,0],[1,1,0],[0,0,1],[0,1,1],[1,0,1],[1,1,1]\}$$

• Section 5.9.1, diagram: The point in the bottom-left-back of the cube should be labeled (0,1,1) but is labeled (0,1,0).

• Section 5.9.5: In “For the third basis vector a_3...” and “Remember that a_2 points from the camera center to the top-left corner of the sensor array, so $a_2 = (-.5,-.5,1)$”, a_2 should be a_3, and $a_3 = [0,0,1]$. The third vector in cb has an extra 0.

• “The third vector c_3 goes from the origin (the camera center) to the top-right corner of whiteboard.” should be “The third vector c_3 goes from the origin (the camera center) to the top-left corner of the whiteboard.”

• Section 5.12.1:

• Section 5.12.6: The vector

$$\begin{bmatrix} x_1 \\ xvec_2 \\ 1 \end{bmatrix}$$

should be

$$\begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$$

• Section 5.12.6: After Task 5.12.2, “Let $[y_1,y_2,y_3] = Hx$” should be “Let $[y_1,y_2,y_3] = \hat{H}x$.”

• Problem 5.14.18: “Write and test a procedure $\text{superset.basis}(S, L)$” should be “Write and test a procedure $\text{superset.basis}(T, L)$”.

• Lemma 6.2.13 (Superset-Basis Lemma) states
For any vector space V and any linearly independent set A of vectors, V has a basis that contains all of A.

but should state

For any vector space V and any linearly independent set A of vectors belonging to V, V has a basis that contains all of A.

- Example 6.3.3: V is defined to be the null space of \[
\begin{bmatrix}
0 & 1 & -1 & 0 \\
1 & 0 & 0 & -1
\end{bmatrix}
\] but should be defined to be the null space of \[
\begin{bmatrix}
0 & 1 & -2 & 0 \\
1 & 0 & 0 & -1
\end{bmatrix}.
\]

- Problem 6.7.3: The output condition says

$$\text{Span } S = \text{Span } S \cup \{z_1, z_2, \ldots, z_i\} - \{w_1, w_2, \ldots, w_k\}$$

but should say

$$\text{Span } S = \text{Span } S \cup \{z_1, z_2, \ldots, z_i\} - \{w_1, w_2, \ldots, w_k\}$$

- Section 7.7.1: $xvec_1$ and $xvec_2$ should be x_1 and x_2

- Section 7.7.4: “Generating mathbf{u}” should be “Generating u.

- Section 7.8.3: “We can represent the factorization of 1176 by the list $[(2, 3), (5, 2)]$, indicating that 1176 is obtained by multiplying together three 2’s and two 5’s” should be “We can represent the factorization of 1176 by the list $[(2, 3), (3, 1), (7, 2)]$, indicating that 1176 is obtained by multiplying together three 2’s, one 3 and two 7’s”, and “1176 = 2^3 \cdot 3 \cdot 7^2” should be “1176 = 2^3 \cdot 3 \cdot 7^2”.

- Task 7.8.7: For $x = 61$, the factored entry has $2 \cdot 3 \cdot 7 \cdot 13$. This should be $2 \cdot 3 \cdot 7 \cdot 31$.

- Task 7.8.9: “gcd(a, b)” should be “gcd($a - b, N$)”.

- Section 9.2: In new spec for project_orthogonal($b, vlist$), output should be “the projection b^\perp of b orthogonal to the vectors in $vlist$”

- Example 9.4.1: The math is misformatted; there should be a line-break just before b_2. That is, the math should state that $b_1 = [-1, -3.5, 0.5]$ and that $b_2 = b_1 - \frac{b_1 \cdot v_2}{v_2 \cdot v_2} v_2 = b_1 - \frac{1}{2} [0, 3, 3] = [-1, -2, 2]$.

- Section 9.6.6: “These vectors span the same space as input vectors $u_1, \ldots, u_k, w_1, \ldots, w_n^\ast\ldots$” The * in w_n^\ast should not be there.

- Section 9.6.6: In the pseudocode for find_orthogonal_complement, the last line should be Return

- Proof of Lemma 10.6.2: The first line of the last sequence of equations,

$$\omega^{r-c} = ((\omega^{r-c})^0 + (\omega^{r-c})^1 + (\omega^{r-c})^2 + \cdots + (\omega^{r-c})^{n-2} + (\omega^{r-c})^{n-1})$$

should be

$$\omega^{r-c} = \omega^{r-c}((\omega^{r-c})^0 + (\omega^{r-c})^1 + (\omega^{r-c})^2 + \cdots + (\omega^{r-c})^{n-2} + (\omega^{r-c})^{n-1})$$

- Task 10.9.16: The procedure image_round should also ensure the numbers are between 0 and 255.

- Proof of Lemma 11.3.6: “Let \mathcal{V} be the space dual to \mathcal{V}” should be “Let \mathcal{V} be the annihilator of \mathcal{V}”, and “the dual of the dual” should be “the annihilator of the annihilator”.

Return
• Section 11.3.3: “...we provide a module svd with a procedure factor(A) that, given a Mat A,
returns a triple (U, Sigma, V) such that A = U * Sigma * V.transpose” should end “such that
A = U * Sigma * V.transpose().”

• Proof of Lemma 11.3.11: “which equals (∥a_1∥^2 + ... + ∥a_m∥^2) + (∥a_1∥^V∥^2 + ... + ∥a_m∥^V∥^2)” should
be “which equals (∥a_1∥^2 + ... + ∥a_m∥^2) − (∥a_1∥^V∥^2 + ... + ∥a_m∥^V∥^2).”

• Section 11.3.5, Proof of Theorem 11.3.12: There is a corrected proof at
http://codingthematrix.com/proof-that-first-k-right-singular-vectors-span-closest-space0.pdf.

• Section 11.3.10: There is a corrected proof at
http://codingthematrix.com/proof-that-U-is-column-orthogonal0.pdf.

• Task 11.6.6, “To help you debug, applying the procedure to with” should be “To help you debug,
applying the procedure with”

• Section 11.4.1: The procedure SVD_solve(A) should take the vector b as a second argument:
SVD_solve(A,b).

• Section 11.6 (Eigenfaces Lab): {x,y for x in range(166) for y in range(189)} should be
{(x,y) for x in range(166) for y in range(189)}.

• Section 12.1.2: The diagonal matrix Λ is used shortly before it is defined.

value is the reciprocal of the eigenvalue of A^{-1} having largest absolute value.

• Section 12.8.1: xvec2(t) should be just x_2(t).

• Section 12.8.1: In the equation
\[
\begin{bmatrix}
x_1(t) \\
x_2(t)
\end{bmatrix} = (SΛS^{-1})^t \begin{bmatrix} x_1(0) \\
x_2(0)
\end{bmatrix}
\]
λ should be Λ.

• Section 12.8.1: xvec2(t) should be x_2(t) and xvec2(0) should be x_2(0).

• Section 12.8.4: “Once consecutive addresses have been requested in timesteps t and t + 1, it is very
likely that the address requested in timestep t + 1 is also consecutive” should end “that the address
requested in timestep t + 2 is also consecutive.”

• Section 12.12.1: “The theorem in Section 12.8.2...” There is no theorem in that section; the
theorem (the Perron-Frobenius Theorem) is not stated in the text.

• Section 12.12.3: The eigenvector given for the test case for Task 12.12.3 is wrong; the correct
eigenvector is roughly {1: 0.5222, 2: 0.6182, 3: 0.5738, 4: 0.0705, 5: 0.0783, 6: 0.0705}.

7