Errata for Edition 1 of *Coding the Matrix*, January 13, 2017

Your copy might not contain some of these errors. Most do not occur in the copies currently being sold as April 2015.

- Section 0.3: "... the input is a pre-image of the input" should be "... the input is a pre-image of the output".

- Figure 4 in Section 0.3.8: The figure should be as follows:

```
1 A
2 B
3 C
f
p
r
g
q
```

- Definition 0.3.14: "there exists $x \in A$ such that $f(x) = z$" should be "there exists $x \in D$ such that $f(x) = z$.

- Section 4.4.4: "...the cryptographer changes the scheme simply by removing ♠ as a possible value for p" should be "... as a possible value for k.

- Section 0.5.4: At the end of the section labeled Mutating a set,

```
>>> U=S.copy()
>>> U.add(5)
>>> S
{1, 3}
```

should end with

```
>>> S
{6}
```

- Problem 0.8.5: "row(p)" should be "row(p, n)."

- Section 1.4.1: "Using the fact that $i^2 = 1$" should be "Using the fact that $i^2 = -1$"

- Section 1.4.5: The diagram illustrating rotation by 90 degrees is incorrect. The dots should form vertical lines to the left of the y-axis.

- Task 1.4.8 and 1.4.9: The figures accompanying these tasks are incorrect: they involve rotation by -90 degrees (i.e. 90 degrees clockwise) instead of 90 degrees (i.e. 90 degrees counterclockwise).

- Task 1.4.10: `image.file2image(filename)` returns a representation of a color image, namely a list of lists of 3-tuples. For the purpose of this task, you must transform it to a representation of a grayscale image, using `image.color2gray(·)`. Also, the pixel intensities are numbers between 0 and 255, not between 0 and 1. In this task, you should assign to `pts` the list of complex numbers $x + iy$ such that the image intensity of pixel (x, y) is less than 120.

- Task 1.4.11: The task mentions `pts` but `S` is intended.

- Section 2.3: "We’ve seen two examples of what we can represent with vectors: multisets and sets." Actually, we’ve only seen multisets.
Section 2.4.1: “or from $[-4, 4]$ to $[-3, -2]$” should be “or from $[-4, -4]$ to $[-3, -2]$”.

Section 2.8.3: “Here is an example of solving an instance of the 3×3 puzzle” should be “Here is an example of one step towards solving an instance of the 3×3 puzzle.”

Example 2.9.1: “Consider the dot-product of $[1, 1, 1, 1, 1]$ with $[10, 20, 0, 40, 100]$” should be “Consider the dot-product of $[1, 1, 1, 1, 1]$ with $[10, 20, 0, 40, -100]$.”

Section 2.9.2: “...in terms of five linear equations...” should be “...in terms of three linear equations...”.

Example 2.9.5:

$cost = \text{Vec}(D, \{\text{hops} : \$2.50/\text{ounce}, \text{malt} : \$1.50/\text{pound}, \text{water} : \$0.006}, \text{yeast} : \$0.45/\text{gram})$

should be

$cost = \text{Vec}(D, \{\text{hops} : \$2.50/\text{ounce}, \text{malt} : \$1.50/\text{pound}, \text{water} : \$0.006, \text{yeast} : \$0.45/\text{gram}\})$

Example 2.9.6: “A linear equation is an equation of the form $a \cdot x = \beta$, where ... is a vector variable.” should be “A linear equation is an equation of the form $a \cdot x = \beta$, where ... x is a vector variable.”

Example 2.9.7: The total energy is not 625J but is 0.0845J, as the Python shows.

Quiz 2.9.9: The total energy consumed in the last row of the table should be 1 J, not 1 W.

Definition 2.9.10: “In general, a system of linear equations (often abbreviated linear system) is a collection of equations:

\[
\begin{align*}
\mathbf{a}_1 \cdot \mathbf{x} &= \beta_1 \\
\mathbf{a}_2 \cdot \mathbf{x} &= \beta_2 \\
&\vdots \\
\mathbf{a}_m \cdot \mathbf{x} &= \beta_m
\end{align*}
\]

where \mathbf{x} is a vector variable. A solution is a vector $\hat{\mathbf{x}}$ that satisfies all the equations.”

should be

“In general, a system of linear equations (often abbreviated linear system) is a collection of equations:

\[
\begin{align*}
\mathbf{a}_1 \cdot \mathbf{x} &= \beta_1 \\
\mathbf{a}_2 \cdot \mathbf{x} &= \beta_2 \\
&\vdots \\
\mathbf{a}_m \cdot \mathbf{x} &= \beta_m
\end{align*}
\]

where \mathbf{x} is a vector variable. A solution is a vector $\hat{\mathbf{x}}$ that satisfies all the equations.”

Quiz 2.9.13: The solution should be “The dot-products are $[2, 2, 0, 0]$."

Quiz 2.9.14: The solution should be $[14, 20, 26, 32]$.

Example 2.9.17:

- “The password is $\hat{\mathbf{x}} = 10111$” should be “The password is $\hat{\mathbf{x}} = 10111$”,
- “Harry computes the dot-product $\mathbf{a}_1 \cdot \hat{\mathbf{x}}$” should be “Harry computes the dot-product $\mathbf{a}_1 \cdot \hat{\mathbf{x}}$”
- “Harry computes the dot-product $\mathbf{a}_2 \cdot \hat{\mathbf{x}}$” should be “Harry computes the dot-product $\mathbf{a}_2 \cdot \hat{\mathbf{x}}$”
- “Carole lets Harry log in if \(\beta_1 = a_1 \hat{x}, \beta_2 = a_2 \hat{x}, \ldots, \beta_k = a_k \hat{x}. \)” should be “Carole lets Harry log in if \(\beta_1 = a_1 x, \beta_2 = a_2 x, \ldots, \beta_k = a_k x. \)”

- Example 2.9.28: “Eve can use the distributive property to compute the dot-product of this sum with the password even though she does not know the password:
\[
(01011 + 11110) \cdot x = 01011 \cdot x + 11110 \cdot x = 0 + 1 = 1
\]
should be
“Eve can use the distributive property to compute the dot-product of this sum with the password \(x \) even though she does not know the password:
\[
(01011 + 11110) \cdot x = 01011 \cdot x + 11110 \cdot x = 0 + 1 = 1
\]

- Task 2.12.8: “Did you get the same result as in Task ???” should be “Did you get the same result as in Task 2.12.7?”

- Quiz 3.1.7: the solution

```python
def lin_comb(vlist,clist):
    return sum([coeff*v for (c,v) in zip(clist, vlist)])
```

should be

```python
def lin_comb(vlist,clist):
    return sum([coeff*v for (coeff,v) in zip(clist, vlist)])
```

- Section 3.2.4: The representation of the old generator \([0, 0, 1]\) in terms of the new generators \([1, 0, 0]\), \([1, 1, 0]\), and \([1, 1, 1]\) should be

\[
[0, 0, 1] = 0 [1, 0, 0] - 1 [1, 1, 0] + 1 [1, 1, 1]
\]

- In Example 3.2.7, “The secret password is a vector \(\hat{x} \) over \(GF(2) \).... the human must respond with the dot-product \(a \cdot \hat{x}. \)” should be “The secret password is a vector \(\hat{x} \) over \(GF(2) \).... the human must respond with the dot-product \(a \cdot \hat{x}. \)”

- Example 3.3.10: “This line can be represented as Span \(\{[1, -2, -2]\} \)” should be “This line can be represented as Span \(\{[-1, -2, 2]\} \)”

- In Example 3.5.1, “There is one plane through the points \(u_1 = [1, 0, 4.4], u_2 = [0, 1, 4], \) and \(u_3 = [0, 0, 3] \)” should be “There is one plane through the points \(u_1 = [1, 0, 4.4], u_2 = [0, 1, 4], \) and \(u_3 = [0, 0, 3] \)”.

- Section 4.1.4: The pretty-printed form of \(\mathbb{M} \) should be

```python
>>> print(M)
    # @ ?
   ---------
a | 2 1 3
b | 20 10 30
```

for some order of the columns.
• Quiz 4.1.9: The given implementation of mat2rowdict will not work until you have implemented the getitem procedure in mat.py.

• Quiz 4.3.1: The pretty-printed form of mat2vec(M) should be

```python
>>> print(mat2vec(M))
('a', '#') ('a', '?') ('a', '@') ('b', '#') ('b', '?') ('b', '@')
```

for some order of the columns.

• Quiz 4.4.2: The pretty-printed form of transpose(M) should be

```python
>>> print(transpose(M))
 a  b
-------
 # | 2 20
@ | 1 10
? | 3 30
```

for some order of the rows. Also, in the solution, the upper-case F should be replaced with a lower-case f.

• Example 4.6.6: The matrix-vector product should be \([1, -3, -1, 4, -1, -1, 2, 0, -1, 0]\).

• Definition 4.6.9: “An \(n \times n\) upper-triangular matrix \(A\) is a matrix with the property that \(A_{ij} = 0\) for \(j > i\)” should be “for \(i > j\)”.

• Section 4.7.2: “Applying Lemma 4.7.4 with \(v = u_1\) and \(z = u_1 - u_2\)” should be “Applying Lemma 4.7.4 with \(v = u_2\) and \(z = u_1 - u_2\)”.

• Section 4.7.4: “because it is the same as \(H \ast c\), which she can compute” should be “because it is the same as \(H \ast \tilde{c}\), which she can compute”.

• Section 4.11.2: “and here is the same diagram with the walk 3 2 e 4 2 shown” should be “and here is the same diagram with the walk 3 2 c 4 e 2 shown”.

• Example 4.11.9: \(g \circ f([x_1, x_2])\) should be \([x_1 + x_2, x_1 + 2x_2]\).

• Example 4.11.15: The last matrix (in the third row) should be \([7, 19, 4, 8]\). a superscript “T” indicating transpose:

\[
\begin{bmatrix}
7 & 19 \\
4 & 8
\end{bmatrix}^T
\]

• Example 4.13.15: \(xvec_1\) should be \(x_1\) and \(xvec_2\) should be \(x_2\).

• The description of Task 4.14.2 comes before the heading “Task 4.14.2”.

• Section 4.15 (Geometry Lab): position is used synonymously with location.

• Section 4.14.6: “Hint: this uses the special property of the order of \(H\)’s rows” should be “Hint: this uses the special property of the order of \(H\)’s columns.”

• Problem 4.17.10 is the same as Problem 4.17.5.

• Problem 4.17.18: “For this procedure, the only operation you are allowed to do on \(A\) is vector-matrix multiplication, using the \(*\) operator: \(v \ast A\)” should be “For this procedure, the only operation you are allowed to do on \(B\) is vector-matrix multiplication, using the \(*\) operator: \(v \ast B\)”.

4
• Problem 4.17.21: $xvec_2$ should be x_2.

• Section 5.3.1: The Grow algorithm should be:

```python
def Grow(V)
    B = ∅
    while possible:
        find a vector $v$ in $V$ that is not in Span $B$, and put it in $B$.
```

• Example 5.3.2: “Finally, note that Span $B = \mathbb{R}^2$ and that neither v_1 nor v_2 alone could generate \mathbb{R}^2” should be \mathbb{R}^3.

• Section 5.4.3: “Let D be the set of nodes, e.g. $D = \{\text{Pembroke, Athletic, Main, Keeney, Wriston}\}$” should be “$D = \{\text{Pembroke, Athletic, Bio-Med, Main, Keeney, Wriston, Gregorian}\}$”

• Section 5.9.1: “The first vector a_1 goes horizontally from the top-left corner of the whiteboard element to the top-right corner” should be “The first vector a_1 goes horizontally from the top-left corner of the top-left sensor element to the top-right corner” and “The second vector a_2 goes vertically from the top-left corner of whiteboard to the bottom-left corner” should be “The second vector a_2 goes vertically from the top-left corner of the top-left sensor element to the bottom-left corner.”

$$L = \begin{bmatrix}
0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1
\end{bmatrix}$$

should be

$$L = \begin{bmatrix}
0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1
\end{bmatrix}$$

• Section 5.9.1, diagram: The point in the bottom-left-back of the cube should be labeled (0,1,1) but is labeled (0,1,0).

• Section 5.9.5: In “For the third basis vector a_2...” and “Remember that a_2 points from the camera center to the top-left corner of the sensor array, so $a_2 = (-.5, -.5, 1)^T$, a_2 should be a_3, and $a_3 = [0, 0, 1]$. The third vector in c_b has an extra 0.

• “The third vector c_3 goes from the origin (the camera center) to the top-right corner of whiteboard.” should be “The third vector c_3 goes from the origin (the camera center) to the top-left corner of the whiteboard.”

• Section 5.12.1:

• Section 5.12.6: The vector

$$\begin{bmatrix}
x_1 \\
xvec_2 \\
1
\end{bmatrix}$$

should be

$$\begin{bmatrix}
x_1 \\
x_2 \\
1
\end{bmatrix}$$

• Section 5.12.6: After Task 5.12.2, “Let $[y_1, y_2, y_3] = Hx$” should be “Let $[y_1, y_2, y_3] = \hat{H}x$”.

• Problem 5.14.18: “Write and test a procedure superset_basis(S, L)” should be “Write and test a procedure superset_basis(T, L)”.

• Lemma 6.2.13 (Superset-Basis Lemma) states

For any vector space V and any linearly independent set A of vectors, V has a basis that contains all of A.

but should state
For any vector space \(V \) and any linearly independent set \(A \) of vectors belonging to \(V \), \(V \) has a basis that contains all of \(A \).

- **Example 6.3.3:** \(V \) is defined to be the null space of the matrix \(\begin{bmatrix} 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix} \) but should be defined to be the null space of \(\begin{bmatrix} 0 & 1 & -2 & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix} \).

- **Problem 6.7.3:** The output condition says

 \[\text{Span } S = \text{Span } S \cup \{ z_1, z_2, \ldots, z_i \} - \{ w_1, w_2, \ldots, w_k \} \]

 but should say

 \[\text{Span } S = \text{Span } S \cup \{ z_1, z_2, \ldots, z_i \} - \{ w_1, w_2, \ldots, w_i \} \]

- **Section 7.7.1:** \(xvec_1 \) and \(xvec_2 \) should be \(x_1 \) and \(x_2 \)

- **Section 7.8.3:** “We can represent the factorization of 1176 by the list \([2, 3, (5, 2)]\), indicating that 1176 is obtained by multiplying together three 2’s and two 5’s” should be “We can represent the factorization of 1176 by the list \([2, 3, 3, 7]\), indicating that 1176 is obtained by multiplying together three 2’s, one 3 and two 7’s”, and “1176 = 2^3 \cdot 3 \cdot 7^2” should be “1176 = 2^3 \cdot 3^1 \cdot 7^2”.

- **Task 7.8.7:** For \(x = 61 \), the factored entry has 2 \cdot 3 \cdot 7 \cdot 13. This should be 2 \cdot 3 \cdot 7 \cdot 31.

- **Task 7.8.9:** “gcd\((a, b)\)” should be “gcd\((a - b, N)\)”.

- **Section 9.2:** In new spec for \(\text{project}_\text{orthogonal}(b, vlist) \), output should be “the projection \(b^\perp \) of \(b \) orthogonal to the vectors in \(vlist \)”

- **Example 9.4.1:** The math is misformatted; there should be a line-break just before \(b_2 \). That is, the math should state that \(b_1 = [-1, -3.5, 0.5] \) and that \(b_2 = b_1 - \frac{\langle b_0, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 = b_1 - \frac{1}{2} [0, 3, 3] = [-1, -2, 2] \).

- **Section 9.6.6:** “These vectors span the same space as input vectors \(u_1, \ldots, u_k, w_1, \ldots, w_n \)” The * in \(w_n^* \) should not be there.

- **Section 9.6.6:** In the pseudocode for \(\text{find}_\text{orthogonal}_\text{complement} \), the last line should be

  ```
  Return
  ```

- **Proof of Lemma 10.6.2:** The first line of the last sequence of equations,

 \[\omega^{r-c} = ((\omega^{r-c})^0 + (\omega^{r-c})^1 + (\omega^{r-c})^2 + \cdots + (\omega^{r-c})^n - 2 + (\omega^{r-c})^{n-1}) \]

 should be

 \[\omega^{r-c} z = \omega^{r-c}((\omega^{r-c})^0 + (\omega^{r-c})^1 + (\omega^{r-c})^2 + \cdots + (\omega^{r-c})^n - 2 + (\omega^{r-c})^{n-1}) \]

- **Task 10.9.16:** The procedure \(\text{image}_\text{round} \) should also ensure the numbers are between 0 and 255.

- **Proof of Lemma 11.3.6:** “Let \(V^* \) be the space dual to \(V \)” should be “Let \(V^* \) be the annihilator of \(V \),” and “the dual of the dual” should be “the annihilator of the annihilator”.

- **Section 11.3.3:** “…we provide a module \(\text{svd} \) with a procedure \(\text{factor}(A) \) that, given a Mat \(A \), returns a triple \((U, \Sigma, V) \) such that \(A = U \cdot \Sigma \cdot V^\text{transpose} \)” should end “such that \(A = U \cdot \Sigma \cdot V^\text{transpose}() \)”
Proof of Lemma 11.3.11: “which equals \(\|a_1\|^2 + \cdots + \|a_m\|^2 \) should be “which equals \(\|a_1\|^2 + \cdots + \|a_m\|^2 \) – \(\|a_1\|^2 + \cdots + \|a_m\|^2 \)"

Section 11.3.5, Proof of Theorem 11.3.12: There is a corrected proof at
http://codingthematrix.com/proof-that-first-k-right-singular-vectors-span-closest-space0.pdf

Section 11.3.10: There is a corrected proof at
http://codingthematrix.com/proof-that-U-is-column-orthogonal0.pdf

Task 11.6.6, “To help you debug, applying the procedure to with” should be “To help you debug, applying the procedure with”

Section 11.4.1: The procedure \(\text{SVD} _\text{solve}(A) \) should take the vector \(b \) as a second argument:
\(\text{SVD} _\text{solve}(A, b) \).

Section 11.6 (Eigenfaces Lab): \(\{x,y \text{ for } x \text{ in range(166) for } y \text{ in range(189)}\} \) should be \(\{(x,y) \text{ for } x \text{ in range(166) for } y \text{ in range(189)}\} \).

Section 12.1.2: The diagonal matrix \(\Lambda \) is used shortly before it is defined.

Problem 12.14.8: Error in statement of Lemma 12.14. The eigenvalue of \(A \) having smallest absolute value is the reciprocal of the eigenvalue of \(A^{-1} \) having largest absolute value.

Section 12.8.1: \(xvec_2(t) \) should be just \(x_2(t) \).

Section 12.8.1: In the equation
\[
\begin{bmatrix}
 x_1(t) \\
 x_2(t)
\end{bmatrix} = (S\Lambda S^{-1})^t
\begin{bmatrix}
 x_1(0) \\
 x_2(0)
\end{bmatrix}
\]
\(\lambda \) should be \(\Lambda \).

Section 12.8.1: \(xvec_2(t) \) should be \(x_2(t) \) and \(xvec_2(0) \) should be \(x_2(0) \).

Section 12.8.4: “Once consecutive addresses have been requested in timesteps \(t \) and \(t + 1 \), it is very likely that the address requested in timestep \(t + 1 \) is also consecutive” should end “that the address requested in timestep \(t + 2 \) is also consecutive.”

Section 12.12.1: “The theorem in Section 12.8.2...” There is no theorem in that section; the theorem (the Perron-Frobenius Theorem) is not stated in the text.

Section 12.12.3: The eigenvector given for the test case for Task 12.12.3 is wrong; the correct eigenvector is roughly \(\{1: 0.5222, 2: 0.6182, 3: 0.5738, 4: 0.0705, 5: 0.0783, 6: 0.0705\} \).